
© Voltech 2000 Page 1 of 6 VPN 104-002/1

Author: A Jesson

Issue: 1

Date: 18 July 00

For further applications, sales and service advice contact your local supplier or Voltech at:

Whilst every care has been taken in compiling the information in this publication Voltech cannot accept legal liability for any
inaccuracies. Voltech has an intensive programme of design and development which may alter product specification, and reserves the
right to alter specification without notice and whenever necessary to ensure optimum performance from its product range.

http://www.voltech.com
oltechV Technical note

002

Using AT Server OLE Functions in
Visual C++



Using AT Server OLE Functions in Visual C++

© Voltech 2000 Page 2 of 6 Issue 1 July 2000

Introduction

Using the AT Series Server OLE2 functions in Visual C++ is much more involved than when using Visual
Basic (or Visual Basic for Applications in Excel).

This Application Note will give some basic guidance to those with some knowledge of Visual C++, but have
not yet attempted an Automation Client Application before.

You will require the "Server.tlb" type library file, available from Voltech Instruments. Please contact your
Voltech supplier.

Setting up Visual C++ Application for OLE

Set-up your new application using the Program Wizard as normal, creating a Dialog, SDI or MDI MFC
executable program.

To allow for Automation Clients to use OLE functions, all MFC OLE applications require the following call to
AfxOleInit, which initialises the OLE DLLs so that they can call OLE interfaces. Add the following code
to the InitInstance member function of your applications' CWinApp-derived class:

if (!AfxOleInit())
{

AfxMessageBox(IDP_OLE_INIT_FAILED);
return FALSE;

}

You will also have to create a string on your string table for IDP_OLE_INIT_FAILED, something like:

"OLE initialisation failed. Make sure that the OLE libraries are
the correct version."



Using AT Server OLE Functions in Visual C++

© Voltech 2000 Page 3 of 6 Issue 1 July 2000

Setting up the OLE Interface Class for the Server OLE Functions

To set up the Interface Class for the Server OLE Function you need to use the Class Wizard. Go to the Class
Wizard as normal using the top menus (View > Class Wizard) or CTRL+W.

Select the Automation tab and then go to Add Class button. From here select 'From a Type Library'. You
then get a browser dialog box appear and you should select the server.tlb file, where ever you have placed
this file, and select open.

You can check and confirm the classname of the interface class, making sure that they do not clash with
your current project names.

The default Class name is 'IAT3600LinkDocument'. The base class is COleDispatchDriver, which allows all
OLE functions to work from.

The header and implementation files can be changed from the default server.h and server.cpp. It would be
more useful to rename these as ATLink.h and ATlink.cpp respectively.

When all the details have been checked the class is created and the header and implementation files added
to the project. When the interface class is created, it sets up each individual InvokeHelper command for each
individual OLE function.



Using AT Server OLE Functions in Visual C++

© Voltech 2000 Page 4 of 6 Issue 1 July 2000

Setting up and performing OLE functions

Setup the use of the new Interface Class for performing the OLE functions of the Server by adding the
"ATLink.h" header file to your dialog or main program. Add the following to your header file's implementation
section, something like:

// Implementation
protected:

IAT3600LinkDocument m_iServerResults;

You may call your member variable anything you like, but the above follows a default, which will be used
later.This sets up your interface variable and you can perform all the functions necessary for OLE
communications through it. When you need to perform OLE communication with the Server, you will need to
add the following code to your program:

...
COleException oe;
BOOL b;
CString sh;
...
b = m_iServerResults.CreateDispatch(("Server.Results"), &oe);
if (!b)
{

sh.Format("Error trying to open Server.Results");
Messagebox(sh, "Automation/OLE", MB_ICONERROR | MB_OK);

}

This sets the variables for using the CreateDispatch function (which is about the same as using CreateObject
in Visual Basic. It also traps any errors if there is a problem creating the dispatch object.
When you have finished using OLE communication, eg when the program has finished, you must always
release the dispatch with the following:

m_iServerResults.ReleaseDispatch();

To use the functions available to you to get data, you will have to use a VARIANT data type. Use the Help
function to get a full understanding of the variant data type in Visual C++. You may want to set up a public
member variant in the header file, but do not forget to initialise the variant with the following code:

VARIANT vntResult;
VariantInit(&vntResult);

For details of how to check a variant for internal data type and for getting values and strings in the variant
type, see the Visual C++ help system.
To use the available OLE functions, you can perform commands like:

vntResult = m_iServerResults.GetVariantResult("COM2",1);

or

vntResult = m_iServerResults.GetUnitType("COM2");



Using AT Server OLE Functions in Visual C++

© Voltech 2000 Page 5 of 6 Issue 1 July 2000

Available Functions

The current list of commands and attributes are as follows:

ID Code Function Return
Variable

0x01 (1) GetResult (LPCSTR ComPort, short TestNumber) float

0x02 (2) GetVariantResult (LPCSTR ComPort, short TestNumber) Variant

0x03 (3) GetPartID (LPCSTR ComPort) Variant

0x04 (4) GetFixtureID (LPCSTR ComPort) Variant

0x05 (5) GetOperatorID (LPCSTR ComPort) Variant

0x06 (6) GetBatchID (LPCSTR ComPort) Variant

0x07 (7) GetCompensationStatus (LPCSTR ComPort) Variant

0x08 (8) GetFirmwareID (LPCSTR ComPort) Variant

0x09 (9) GetUnitID (LPCSTR ComPort) Variant

0x0A (10) GetTransformerSerialNo (LPCSTR ComPort) Variant

0x0B (11) GetResultsPolarity (LPCSTR ComPort, short TestNumber) Variant

0x0C (12) GetNumberOfTests (LPCSTR ComPort) Variant

0x0D (13) GetMinLimit (LPCSTR ComPort, short TestNumber) Variant

0x0E (14) GetMaxLimit (LPCSTR ComPort, short TestNumber) Variant

0x0F (15) GetResultPolarity (LPCSTR ComPort, short TestNumber) Variant

0x10 (16) GetOverallPass (LPCSTR ComPort) Variant

0x11 (17) GetTestPass (LPCSTR ComPort, short TestNumber) Variant

0x12 (18) GetTestStatus (LPCSTR ComPort, short TestNumber) Variant

0x13 (19) GetTestMnemonic (LPCSTR ComPort, short TestNumber) Variant

0x14 (20) GetTestUnits (LPCSTR ComPort, short TestNumber) Variant

0x15 (21) GetPolarityPass (LPCSTR ComPort, short TestNumber) Variant

0x16 (22) NewDataAvaiable (LPCSTR ComPort) Variant

0x17 (23) GetUnitType (LPCSTR ComPort) Variant

0x18 (24) LoadProgramToAT (LPCSTR ComPort, LPCSTR ProgName) Variant

0x19 (25) RunProgramInAT (LPCSTR ComPort) Variant

0x1A (26) StopAT (LPCSTR ComPort) Variant

Notes:

1. NewDataAvailable function does not return a variant boolean type, as described in the UserManual. This
function returns (if applicable) a short INT variant (VT_I2) with 0 for FALSE and 1 for TRUE.

2. To reset the NewDataAvailable flag, you must collect at least one GetVariantResult or GetResult.

3. The GetResult function returns a true float data type. It is used only for backward compatibility with older
software and should not be used for new programs. GetVariantResult should only be used to collect
results in new code.



Using AT Server OLE Functions in Visual C++

© Voltech 2000 Page 6 of 6 Issue 1 July 2000

Timing Sequence of results returned from Server

The results that are available from the OLE functions depend on what happens both in the server and the
transformer test unit.

There will be error messages if the Server software has not been installed on the computer. The reason for
this is that during the installation of the Server software, the OLE functionality is registered in the Windows
Registry.

There will also be any error if the Server software is not running when the created Automation Client
application is not running (your program).

To start getting any results, you must ensure that the Server application is open, and you have opened the
COM Port channel that the AT Series unit is connected to. You will still get no results (except fail messages)
until a program has been loaded into the AT. This can be done via the front panel of the AT or via the OLE
command LoadProgramToAT.

At this point only information about the AT tester can be gathered. All other data, including
GetNumberOfTests, will only bring back valid results once the test program has been run at least once.

Note: Your test program must be set up with the option of "Send Results to Server".


